dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Gravity current down a steeply inclined slope in a rotating fluid
VerfasserIn G. I. Shapiro, A. G. Zatsepin
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 15, no. 3 ; Nr. 15, no. 3, S.366-374
Datensatznummer 250012672
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-15-366-1997.pdf
 
Zusammenfassung
The sinking of dense water down a steep continental slope is studied using laboratory experiments, theoretical analysis and numerical simulation. The experiments were made in a rotating tank containing a solid cone mounted on the tank floor and originally filled with water of constant density. A bottom gravity current was produced by injecting more dense coloured water at the top of the cone. The dense water plume propagated from the source down the inclined cone wall and formed a bottom front separating the dense and light fluids. The location of the bottom front was measured as a function of time for various experimental parameters. In the majority of runs a stable axisymmetric flow was observed. In certain experiments, the bottom layer became unstable and was broken into a system of frontal waves which propagated down the slope. The fluid dynamics theory was developed for a strongly non-linear gravity current forming a near-bottom density front. The theory takes into account both bottom and interfacial friction as well as deviation of pressure from the hydrostatic formula in the case of noticeable vertical velocities. Analytical and numerical solutions were found for the initial (t < 1/ƒ), intermediate (t1/ƒ), and main (t » 1/ƒ) stages, where ƒ is the Coriolis parameter. The model results show that during the initial stage non-linear inertial oscillations are developed. During the main stage, the gravity current is concentrated in the bottom layer which has a thickness of the order of the Ekman scale. The numerical solutions are close to the same analytical one. Stability analysis shows that the instability threshold depends mainly on the Froude number and does not depend on the Ekman number. The results of laboratory experiments confirm the similarity properties of the bottom front propagation and agree well with the theoretical predictions.
 
Teil von