dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Time-dependent prediction degredation assessment of neural-networks-based TEC forecasting models
VerfasserIn Th. D. Xenos, S. S. Kouris, A. Casimiro
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 10, no. 6 ; Nr. 10, no. 6, S.585-587
Datensatznummer 250008214
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-10-585-2003.pdf
 
Zusammenfassung
An estimation of the difference in TEC prediction accuracy achieved when the prediction varies from 1 h to 7 days in advance is described using classical neural networks. Hourly-daily Faraday-rotation derived TEC measurements from Florence are used. It is shown that the prediction accuracy for the examined dataset, though degrading when time span increases, is always high. In fact, when a relative prediction error margin of ± 10% is considered, the population percentage included therein is almost always well above the 55%. It is found that the results are highly dependent on season and the dataset wealth, whereas they highly depend on the foF2 - TEC variability difference and on hysteresis-like effect between these two ionospheric characteristics.
 
Teil von