|
Titel |
Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas |
VerfasserIn |
J. Moldanová, E. Fridell, H. Winnes, S. Holmin-Fridell, J. Boman, A. Jedynska, V. Tishkova, B. Demirdjian, S. Joulie, H. Bladt, N. P. Ivleva, R. Niessner |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1867-1381
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Measurement Techniques ; 6, no. 12 ; Nr. 6, no. 12 (2013-12-17), S.3577-3596 |
Datensatznummer |
250085138
|
Publikation (Nr.) |
copernicus.org/amt-6-3577-2013.pdf |
|
|
|
Zusammenfassung |
In this paper emission factors (EFs) for particulate matter (PM) and some
sub-components as well as gaseous substances were investigated in two
onboard measurement campaigns. Emissions from two 4-stroke main engines were
measured under stable-load conditions. The impact of varying engine load on the
emissions was investigated on one of the engines, and the impact of fuel quality on
the other, where heavy fuel oil (HFO) with sulphur content 1% and
0.5% and marine gas oil (MGO) with sulphur content 0.1% were used.
Furthermore, emissions from one auxiliary engine were studied. The measured EFs
for PM mass were in the range of 0.3 to 2.7 g kg−1 fuel with the lowest values for emissions from
the combustion of MGO, and the highest values for HFO with a sulphur content of 1%.
The PM mass size distribution was dominated by particles in accumulation
mode. Emission factors for particle numbers EF(PN) in the range of 5 ×
1015–1 × 1017 # kg−1 fuel were found, the number
concentration was dominated by particles in the ultrafine mode and ca. 2/3 of
the particle number were non-volatile.
The most abundant component of the PM mass was organic carbon, making up
25–60% of the PM. The measured EFs for organic carbon (OC) were
0.6 g kg−1 fuel for HFO and 0.2 g kg−1 fuel for MGO. Elemental
carbon (EC) made up 10–38% of the PM mass, with no significant
differences between HFO and MGO fuels. The concentrations of metals on
sampled filters were investigated with energy dispersive X-ray fluorescence
(EDXRF) and the detected metal elements in exhaust when using HFO was
concluded to originate from both the fuel (V, Ni, Fe) and the lubricant (Ca,
Zn), while for the case of MGO combustion, most of the metals were concluded
to originate from the lubricants. The measured emission factors for sulphate
particles, EF (SO2−4), were low, ca. 0.1–0.2 g kg−1 fuel for
HFO with 1% sulphur, 0.07–0.09 g kg−1 fuel for HFO with
0.5% sulphur and 0.003–0.006 g kg−1 fuel for MGO. This
corresponds to 0.1–0.8% and 0.1–0.6% of fuel S converted to PM
sulphate for HFO and MGO, respectively.
Scanning transmission electron microscopy (STEM) images of the collected PM
showed three different types of particles: relatively pure soot; char and
char-mineral particles; and amorphous, probably organic particles containing
inorganic impurities. The maps of elements obtained from STEM showed a
heterogeneous composition of primary soot particles with respect to the trace
metals and sulphur. Temperature-programmed oxidation (TPO) of PM showed
higher soot oxidation reactivity compared to automotive diesel soot, PM from
the HFO exhaust being more reactive than PM from the MGO exhaust. Oxidative
potential measured as the rate of consumption of Dithiothreitol (DTT) was for
the first time measured on PM from ship exhaust. The obtained values were
between 0.01 and 0.04 nmol DTT min−1 μg−1 PM, which is quite similar to oxidative potentials of PM
collected at urban and traffic sites.
The data obtained during the experiments add information about emission factors
for both gaseous and PM-bound compounds from ship engines using different
fuels and under different engine-load conditions. Observed variability of
the EFs illustrates uncertainties of these emission factors as a result of
influences from fuel and lubricant composition, from differences between
individual engines and from the differences in sampling conditions. |
|
|
Teil von |
|
|
|
|
|
|