dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel In Situ Probe Science at Saturn
VerfasserIn David H. Atkinson, Jonathan I. Lunine, Amy A. Simon-Miller, Sushil K. Atreya, William B. Brinckerhoff, Anthony Colaprete, Athena Coustenis, Leigh N. Fletcher, Tristan Guillot, Jean-Pierre Lebreton, Paul Mahaffy, Olivier Mousis, Glenn S. Orton, Kim Reh, Linda J. Spilker, Thomas R. Spilker, Chris R. Webster
Konferenz EGU General Assembly 2014
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 16 (2014)
Datensatznummer 250087512
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2014-1564.pdf
 
Zusammenfassung
Abstract A fundamental goal of solar system exploration is to understand the origin of the solar system, the initial stages, conditions, and processes by which the solar system formed, how the formation process was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He/3He, D/H, 15N/14N, 18O/16O, and 13C/12C. Detection of certain disequilibrium species, diagnostic of deeper internal processes and dynamics of the atmosphere, would also help discriminate between competing theories. Many of the key atmospheric constituents needed to discriminate between alternative theories of giant planet formation and chemical evolution are either spectrally inactive or primarily located in the deeper atmosphere inaccessible to remote sensing from Earth, flyby, or orbiting spacecraft. Abundance measurements of these key constituents, including the two major molecular carriers of carbon, methane and carbon monoxide (neither of which condense in Saturn's atmosphere), sulfur which is expected to be well-mixed below the 4 to 5-bar ammonium hydrosulfide (NH4SH) cloud, and gradients of nitrogen below the NH4SH cloud and oxygen in the upper layers of the H2O and H2O-NH4 solution cloud, must be made in situ and can only be achieved by an entry probe descending through 10 bars. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed atmosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution that also require in situ exploration. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chemistries, dynamics, processes, and climates on all planets in the solar system including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Saturn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key atmospheric constituents, and atmospheric structure including pressures, temperatures, dynamics, and cloud locations and properties not accessible by remote sensing can serve to test competing theories of solar system and giant planet origin, chemical, and dynamical evolution. Acknowledgements This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2013 California Institute of Technology. U.S. Government sponsorship acknowledged. O. Mousis acknowledges support from CNES.