dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Evaluation of 1-D tracer concentration profile in a small river by means of Multi-Layer Perceptron Neural Networks
VerfasserIn A. Piotrowski, S. G. Wallis, J. J. Napiórkowski, P. M. Rowiński
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 11, no. 6 ; Nr. 11, no. 6 (2007-12-07), S.1883-1896
Datensatznummer 250009550
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-11-1883-2007.pdf
 
Zusammenfassung
The prediction of temporal concentration profiles of a transported pollutant in a river is still a subject of ongoing research efforts worldwide. The present paper is aimed at studying the possibility of using Multi-Layer Perceptron Neural Networks to evaluate the whole concentration versus time profile at several cross-sections of a river under various flow conditions, using as little information about the river system as possible. In contrast with the earlier neural networks based work on longitudinal dispersion coefficients, this new approach relies more heavily on measurements of concentration collected during tracer tests over a range of flow conditions, but fewer hydraulic and morphological data are needed. The study is based upon 26 tracer experiments performed in a small river in Edinburgh, UK (Murray Burn) at various flow rates in a 540 m long reach. The only data used in this study were concentration measurements collected at 4 cross-sections, distances between the cross-sections and the injection site, time, as well as flow rate and water velocity, obtained according to the data measured at the 1st and 2nd cross-sections.

The four main features of concentration versus time profiles at a particular cross-section, namely the peak concentration, the arrival time of the peak at the cross-section, and the shapes of the rising and falling limbs of the profile are modeled, and for each of them a separately designed neural network was used. There was also a variant investigated in which the conservation of the injected mass was assured by adjusting the predicted peak concentration. The neural network methods were compared with the unit peak attenuation curve concept.

In general the neural networks predicted the main features of the concentration profiles satisfactorily. The predicted peak concentrations were generally better than those obtained using the unit peak attenuation method, and the method with mass-conservation assured generally performed better than the method that did not account for mass-conservation. Predictions of peak travel time were also better using the neural networks than the unit peak attenuation method. Including more data into the neural network training set clearly improved the prediction of the shapes of the concentration profiles. Similar improvements in peak concentration were less significant and the travel time prediction appeared to be largely unaffected.
 
Teil von