dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Reliability of poroelastic equation in determination of minimum horizontal stress in sedimentary basins: implication of tectonic strain
VerfasserIn Uy Vo, Chandong Chang
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250142584
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-6222.pdf
 
Zusammenfassung
Minimum horizontal stress (Shmin) magnitude, normally one of the three principal stresses, provides vital information in various stages of petroleum development such as hydraulic fracture design, wellbore stability analysis, and sand production prediction. Mini-frac or leak-off tests (LOT) are considered to be the technique used to measure Shmin magnitudes directly in the formation. Still, other than being time-consuming and costly, LOT does not give a continuous Shminprofile. A conventional alternative is to use a linear poroelasticity equation derived based on the assumption of uniaxially strained basins, which provides minimum horizontal stress magnitude (Shmin) as a function of vertical stress, pore pressure and Poisson’s ratio (ν). In this study, we inspect the reliability of poroelastic equation-based calculation by comparing measured data of Shmin, pore pressure with log-based minimum horizontal stress magnitude in 6 major sedimentary basins worldwide. For calculation of Shmin via the equation, we assume ν of 0.25 and Biot’s constant of unity. The comparison shows that the predicted Shmin values generally underestimate the measured values by a range between 4% and as high as 29% depending on the regions. The wide variation of horizontal stress may imply unpredictable complications in the stress states in the sedimentary basins. Besides, we also collect the data of maximum horizontal stress magnitudes and Young’s modulus to estimate local tectonic strains, which are responsible for additional stresses over the induced horizontal stresses. The result reveals that the tectonic strain magnitudes are not consistent with the difference between measured and calculated values in minimum horizontal stress. Our results suggest that rock mechanical property such as Young’s modulus is a more dominant factor that controls tectonic stress.