dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Operational hydrological data assimilation with the recursive ensemble Kalman filter
VerfasserIn H. K. McMillan, E. Ö. Hreinsson, M. P. Clark, S. K. Singh, C. Zammit, M. J. Uddstrom
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 17, no. 1 ; Nr. 17, no. 1 (2013-01-10), S.21-38
Datensatznummer 250017673
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-17-21-2013.pdf
 
Zusammenfassung
This paper describes the design and use of a recursive ensemble Kalman filter (REnKF) to assimilate streamflow data in an operational flow forecasting system of seven catchments in New Zealand. The REnKF iteratively updates past and present model states (soil water, aquifer and surface storages), with lags up to the concentration time of the catchment, to improve model initial conditions and hence flow forecasts. We found the REnKF overcame instabilities in the standard EnKF, which were associated with the natural lag time between upstream catchment wetness and flow at the gauging locations. The forecast system performance was correspondingly improved in terms of Nash–Sutcliffe score, persistence index and bounding of the measured flow by the model ensemble. We present descriptions of filter design parameters and explanations and examples of filter behaviour, as an information source for other groups wishing to assimilate discharge observations for operational forecasting.
 
Teil von