dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America
VerfasserIn T. S. Santos, D. Mendes, R. R. Torres
Medientyp Artikel
Sprache Englisch
ISSN 2198-5634
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics Discussions ; 2, no. 4 ; Nr. 2, no. 4 (2015-08-06), S.1317-1337
Datensatznummer 250115191
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npgd-2-1317-2015.pdf
 
Zusammenfassung
Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANN) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon, Northeastern Brazil and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model out- put and observed monthly precipitation. We used GCMs experiments for the 20th century (RCP Historical; 1970–1999) and two scenarios (RCP 2.6 and 8.5; 2070–2100). The model test results indicate that the ANN significantly outperforms the MLR downscaling of monthly precipitation variability.
 
Teil von