dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Experimental and mathematical modeling of soil water and heat regime in selected soils
VerfasserIn Radka Kodešová, Miroslav Fer, Ales Klement, Antonín Nikodem, Mirka Vlasakova, Daniela Tepla, Ondrej Jaksik
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250079285
 
Zusammenfassung
Knowledge of soil thermal (heat) properties is essential when assessing heat transport in soils. Heat regime in soils associates with many other soil processes (like water evaporation and diffusion, plant transpiration, contaminants behavior etc.). Thermal properties are needed when assessing affectivity of energy gathering from soil profiles using horizontal ground heat exchangers, which is a main goal of this study. Study is focused on measuring of thermal properties (heat capacity and heat conductivity) in representative soils of the Czech Republic. Measurements were performed on soil samples taken from the surface horizons of 11 representative soil types and from 2 soil substrates (sand and loess). The measured relationships between the heat conductivity and volumetric soil-water content were described by non-linear equations (Chung and Horton, 1987). The measured relationships between the heat capacity and volumetric soil-water content were expressed using the linear equations. The greatest values of the heat conductivity were measured in sandy soils (sandy and gravely sand substrates). The average values were obtained in soils on loess substrates. Lower values were obtained for all Cambisols (variable substrates). The lowest values were measured in Stagnic Chernozem Siltic on marlite. Opposite trend was observed for the maximal heat capacity, which was mostly impacted by water content. A soil water and heat regime within the soil profile was monitored at one location. In addition the impact of various soil cover at the soil top on soil water content and temperature was measured. Soil hydraulic properties were measured using the multistep-outflow technique. The saturated hydraulic conductivities were also measured using the Guelph permeameter. Programs HYDRUS-1D and 2D/3D were used for a mathematical interpretation of the observed soil water and heat regime. Acknowledgment: Authors acknowledge the financial support of the Technology Agency of the Czech Republic (TA02020991). Work was also partly supported by the Ministry of Agriculture of the Czech Republic (QJ1230319). Literature Chung, S.O., Horton, R. 1987. Soil heat and water flow with a partial surface mulch, Water Resour. Res., 23(12), 2175-2186, 1987.