|
Titel |
Hydrological response of a small catchment burned by experimental fire |
VerfasserIn |
C. R. Stoof, R. W. Vervoort, J. Iwema, E. Elsen, A. J. D. Ferreira, C. J. Ritsema |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1027-5606
|
Digitales Dokument |
URL |
Erschienen |
In: Hydrology and Earth System Sciences ; 16, no. 2 ; Nr. 16, no. 2 (2012-02-02), S.267-285 |
Datensatznummer |
250013163
|
Publikation (Nr.) |
copernicus.org/hess-16-267-2012.pdf |
|
|
|
Zusammenfassung |
Fire can considerably change hydrological processes, increasing the risk of
extreme flooding and erosion events. Although hydrological processes are
largely affected by scale, catchment-scale studies on the hydrological
impact of fire in Europe are scarce, and nested approaches are rarely used.
We performed a catchment-scale experimental fire to improve insight into the
drivers of fire impact on hydrology. In north-central Portugal, rainfall,
canopy interception, streamflow and soil moisture were monitored in small
shrub-covered paired catchments pre- and post-fire. The shrub cover was
medium dense to dense (44 to 84%) and pre-fire canopy interception was on
average 48.7% of total rainfall. Fire increased streamflow volumes 1.6
times more than predicted, resulting in increased runoff coefficients and
changed rainfall-streamflow relationships – although the increase in
streamflow per unit rainfall was only significant at the subcatchment-scale.
Fire also fastened the response of topsoil moisture to rainfall from 2.7 to
2.1 h (p = 0.058), and caused more rapid drying of topsoils after rain events.
Since soil physical changes due to fire were not apparent, we suggest that
changes resulting from vegetation removal played an important role in
increasing streamflow after fire. Results stress that fire impact on
hydrology is largely affected by scale, highlight the hydrological impact of
fire on small scales, and emphasize the risk of overestimating fire impact
when upscaling plot-scale studies to the catchment-scale. Finally, they
increase understanding of the processes contributing to post-fire flooding
and erosion events. |
|
|
Teil von |
|
|
|
|
|
|