dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The effects of land abandonment and long-term afforestation practices on the organic carbon and lignin content of a Mediteranean soil
VerfasserIn Romy Stijsiger, Estela Nadal-Romero, Julian Campo, Erik Cammeraat
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250121825
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-679.pdf
 
Zusammenfassung
THE EFFECTS OF LAND ABANDONMENT AND LONG-TERM AFFORESTATION PRACTICES ON THE ORGANIC CARBON AND LIGNIN CONTENT OF A MEDITERANEAN SOIL R.J. Stijsiger 1, E. Nadal-Romero 2,3, J. Campo 2,4, Erik Cammerraat2 1 University of Wageningen, Soil Physics and Land Management, Wageningen University and Research centre, 2 Earth Surface Science, Institute for Biodiversity and Ecosystems Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands 3 University of Zaragoza 4 Environmental Forensic and Landscape Chemistry Research Group. Desertification Research Centre - CIDE. Carretera Moncada - Náquera km 4.5 (Campus IVIA). 46113 Moncada, Valencia, Spain Abstract Afforestation is an important strategy that can decrease atmospheric carbon in sequestering it in biomass and soils (Pérez-Crusado et al., 2014). In Spain an active afforestation program was adopted in the 1950s, when after wide spread land abandonment the soils were severely eroded (FAO, 2015). In this research the organic carbon and lignin content of the soils in the Araguás catchment area in the Spanish Pyrenees were examined. This research is part of a larger research examining the effect of afforestation over time (Med Afforest Project, PIEF-GA-2013-624974). The research area was afforested with both the P. sylvestris (Scotts Pine) and the P.nigra (Black Pine). Both sites were compared to bare soil (representing severely eroded soil), natural secondary succession (re-vegetation) and meadows. The method used to assess the lignin content is Curie-point pyrolysis with tetramethylammonium hydroxide (TMAH). The results showed a reducing trend for the soil organic carbon (SOC) content with depth. The highest SOC and lignin contents in the topsoil were found under P.nigra and secondary succession. This decline in lignin content corresponds with a high degradation rate (Ad/Al) in the top soil and lower degradation rates in depths of >20 cm. Meadows showed an increased SOC content in deeper horizons, which corresponds to high lignin content as well. In which the meadows showed an increase in lignin content for the soil depths of >20 cm that was unusual and could not be explained by the S/G and P/G ratios and the degradation ratio (Ad/Al). According to the results, P. nigra was the best afforestation practice for increasing the SOC and lignin contents in the soil. The P. sylvestris was considered but proved to be less successful than natural secondary succession. Acknowledgements This research was supported by a Marie Curie Intra-European Fellowship in the project “MED-AFFOREST” (PIEF-GA-2013-624974). JC also acknowledges the VALi+d postdoctoral contract (APOSTD/2014/010) of the Generalitat Valenciana for funding. Finally, authors want to thank to Chiara Cerli and Joke Westerveld for their help in the laboratory work and for discussion. References FAO (2015a) The Spanish Afforestation program. An International Review of Forestry and Forest Products. Unasylva, 12(1). Retrieved from: http://www.fao.org/docrep/x5386e/x5386e02.htm#TopOfPage Pérez-Cruzado, C., Sande, B., Omil, B., Rovira, P., Martin-Pastor, M., Barros, N., ... & Merino, A. (2014). Organic matter properties in soils afforested with Pinus radiata. Plant and soil, 374(1-2), 381-398.