dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic forest
VerfasserIn E. Sousa Neto, J. B. Carmo, M. Keller, S. C. Martins, L. F. Alves, S. A. Vieira, M. C. Piccolo, P. Camargo, H. T. Z. Couto, C. A. Joly, L. A. Martinelli
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 8, no. 3 ; Nr. 8, no. 3 (2011-03-21), S.733-742
Datensatznummer 250005574
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-8-733-2011.pdf
 
Zusammenfassung
Soils of tropical forests are important to the global budgets of greenhouse gases. The Brazilian Atlantic Forest is the second largest tropical moist forest area of South America, after the vast Amazonian domain. This study aimed to investigate the emissions of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes along an altitudinal transect and the relation between these fluxes and other climatic, edaphic and biological variables (temperature, fine roots, litterfall, and soil moisture). Annual means of N2O flux were 3.9 (± 0.4), 1.0 (± 0.1), and 0.9 (± 0.2) ng N cm−2 h−1 at altitudes 100, 400, and 1000 m, respectively. On an annual basis, soils consumed CH4 at all altitudes with annual means of −1.0 (± 0.2), −1.8 (± 0.3), and −1.6 (± 0.1) mg m−2 d−1 at 100 m, 400 m and 1000 m, respectively. Estimated mean annual fluxes of CO2 were 3.5, 3.6, and 3.4 μmol m−2 s−1 at altitudes 100, 400 and 1000 m, respectively. N2O fluxes were significantly influenced by soil moisture and temperature. Soil-atmosphere exchange of CH4 responded to changes in soil moisture. Carbon dioxide emissions were strongly influenced by soil temperature. While the temperature gradient observed at our sites is only an imperfect proxy for climatic warming, our results suggest that an increase in air and soil temperatures may result in increases in decomposition rates and gross inorganic nitrogen fluxes that could support consequent increases in soil N2O and CO2 emissions and soil CH4 consumption.
 
Teil von