dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Nutrient and trace metals atmospheric deposition in the western Mediterranean: source apportionment
VerfasserIn Karine Desboeufs, Elisabeth Bon Nguyen, Pasquale Simeoni, François Dulac
Konferenz EGU General Assembly 2015
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 17 (2015)
Datensatznummer 250111424
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2015-11534.pdf
 
Zusammenfassung
Mediterranean Sea is a typical LNLC region particularly well adapted to assess the role of ocean–atmosphere exchanges. Throughout the summer stratification period when diffusion through the thermocline is low, atmospheric inputs become the main external source of nutrients to the surface open waters of the MS, mostly by wet deposition in the western basin.Here, we show a 3-yr time continuous series of nutrient (N, P) and trace metals (Cr, Cu, Fe, P, V, Zn) total deposition fluxes in Corsica. Between March 2008 and May 2011, a monitoring station was operated with a weekly sampling time step at Galeria (42.44°N; 8.65°E) on the western coast of Corsica in the framework of the projects DUNE (a Dust Experiment in a Low Nutrient Low Chlorophyll Ecosystem) and then ChArMEx (the Chemistry-Aerososl Mediterranean Experiment). Monthly fluxes were measured to assess the temporal variability of the measured elements over the Western Mediterranean. Nutrients deposition presented a clear seasonal pattern which was different for each studied nutrients, emphasizing a difference of sources for the nutrients. The results show no dust event larger than 0.68 g m-2 so that the maximum yearly flux was among the lowest ever observed in Corsica (1.7 g m-2 y-1). One dust deposition event could contribute up to 30% of yearly deposition fluxes of nutrient and trace metals, confirming the high temporal variability of atmospheric deposition. However a source apportionment work via statistical methods shows that the yearly deposition fluxes of considered nutrient and trace metals were dominated by anthropogenic sources, except for Fe. Acknowledgements: DUNE project was funded by ANR. ChArMEx (http://charmex.lsce.ipsl.fr) is funded by CNRS/INSU, ADEME, CEA and Météo-France in the framework of the programme MISTRALS (http://www.mistrals-home.org)