dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The interaction between atmospheric gravity waves and large-scale flows: an efficient description beyond the non-acceleration paradigm
VerfasserIn Gergely Bölöni, Bruno Ribstein, Jewgenija Muraschko, Christine Sgoff, Junhong Wei, Ulrich Achatz
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250138663
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-1757.pdf
 
Zusammenfassung
With the aim of contributing to the improvement of subgrid-scale gravity wave (GW) parameterizations in numerical-weather-prediction and climate models, the comparative relevance in GW drag of direct GW-mean-flow interactions and turbulent wave breakdown are investigated. Of equal interest is how well Wentzel-Kramer-Brillouin (WKB) theory can capture direct wave-mean-flow interactions, that are excluded by applying the steady-state approximation. WKB is implemented in a very efficient Lagrangian ray-tracing approach that considers wave action density in phase-space, thereby avoiding numerical instabilities due to caustics (Muraschko et al., 2015, Quart. J. Roy. Meteor. Soc., 141, 676–697). It is supplemented by a simple wave-breaking scheme based on a static-instability saturation criterion. Idealized test cases of horizontally homogeneous GW packets are considered where wave-resolving Large-Eddy Simulations (LES) provide the reference. In all of theses cases the WKB simulations including direct GW-mean-flow interactions reproduce the LES data, to a good accuracy, already without wave-breaking scheme. The latter provides a next-order correction that is useful for fully capturing the total-energy balance between wave and mean flow. Moreover, a steady-state WKB implementation, as used in present GW parameterizations, and where turbulence provides, by the non-interaction paradigm, the only possibility to affect the mean flow, is much less able to yield reliable results. The GW energy is damped too strongly and induces an oversimplified mean flow. This argues for WKB approaches to GW parameterization that take wave transience into account (Bölöni et al., 2016 J. Atmos. Sci., 73, 4833–4852).