dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Influence of organic amendments on nickel phytoextraction and growth effects to Trifolium alexandrinum
VerfasserIn Muhammad Shahid, Muhammad Sabir, Abdul Ghafoor
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250084836
 
Zusammenfassung
Heavy metal pollution of soil and other environmental compartments through anthropogenic activities and/or natural processes is a widespread and serious problem confronting society, scientists, and regulators worldwide (Shahid et al., 2011). Among the heavy metals, Ni is an essential heavy metal and plays many functions in living organisms (Khoshgoftarmanesh et al., 2011). The presence of this metal in soil or growth medium may have positive biological effects on plant growth. However, Ni may interfere with various morphological, physiological and biochemical process in plants when its concentration rises to supra-optimal values i.e., 100 mg kg-1 in plants and 420 kg ha-I in soil (Tucker, 2005). The use of organic amendments is a common practice in Pakistan to improve soil fertility. Organic amendments are known to affect chemical speciation and bioavailability of heavy metals and in turn their uptake and toxicity to plants (Shahid et al., 2012). The present study evaluate the influence of organic amendments viz. farm yard manure (FM), poultry manure (PM), press mud (PrM) and activated carbon (AC) on Ni bioavailability in soil as well as its uptake and growth responses of Trifolium alexandrinum. A pot experiment was conducted where T. alexandrinum was exposed to three different Ni level i.e., 30, 60 and 90 mg kg-1 in the form of NiCl2 solution in the presence and absence of organic amendments each applied at 15 g kg-1 soil. The results showed that the effect of organic amendments on Ni bioavailability and uptake by T. alexandrinum depend on Ni levels in soil and amendment type. Application of organic amendments generally increased Ni phytoavailability in soil and Ni uptake by plants at low Ni levels (Ni-0 and Ni-30) but decreased at higher levels (Ni-60 and Ni-90). It is proposed that the soil Ni levels and amendment type must be considered while using these amendments in Ni remediation and risk assessment studies. Keywords: Nickel, organic amendments, bioavailability, Trifolium alexandrinum, plant growth. REFERENCES Shahid M, Pinelli E, Dumat C, 2012. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. Journal of Hazardous Materials, 219-220: 1–12. Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C, 2011. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicology and Environmental Safety, 74(1): 78–84. Khoshgoftarmanesh, A.H. Hosseini, F. and Afyuni, M. (2011) Nickel supplementation effect on the growth, urease activity and urea and nitrate concentrations in lettuce supplied with different nitrogen sources. Sci. Horti., 130, 381–385. Tucker, M.R. Hardy, D.H. and Stokes, C.E. (2005) Heavy metals in North Carolina soils: occurrence and significance. North Carolina Department of Agriculture and Consumer Services, Agronomic Division.