dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Dynamic Models of Earthquakes and Tsunamis in the Santa Barbara Channel, California
VerfasserIn David Oglesby, Kenny Ryan, Eric Geist
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250128941
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-8989.pdf
 
Zusammenfassung
The Santa Barbara Channel and the adjacent Ventura Basin in California are the location of a number of large faults that extend offshore and could potentially produce earthquakes of magnitude greater than 7. The area is also home to hundreds of thousands of coastal residents. To properly evaluate the earthquake and tsunami hazard in this region requires the characterization of possible earthquake sources as well as the analysis of tsunami generation, propagation and inundation. Toward this end, we perform spontaneous dynamic earthquake rupture models of potential events on the Pitas Point/Lower Red Mountain faults, a linked offshore thrust fault system. Using the 3D finite element method, a realistic nonplanar fault geometry, and rate-state friction, we find that this fault system can produce an earthquake of up to magnitude 7.7, consistent with estimates from geological and paleoseismological studies. We use the final vertical ground deformation from our models as initial conditions for the generation and propagation of tsunamis to the shore, where we calculate inundation. We find that path and site effects lead to large tsunami amplitudes northward and eastward of the fault system, and in particular we find significant tsunami inundation in the low-lying cities of Ventura and Oxnard. The results illustrate the utility of dynamic earthquake modeling to produce physically plausible slip patterns and associated seafloor deformation that can be used for tsunami generation.