dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Unusually negative nitrogen isotopic compositions (δ¹⁵N) of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem
VerfasserIn M. L. Fogel, M. J. Wooller, J. Cheeseman, B. J. Smallwood, Q. Roberts, I. Romero, M. J. Meyers
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 5, no. 6 ; Nr. 5, no. 6 (2008-12-11), S.1693-1704
Datensatznummer 250002934
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-5-1693-2008.pdf
 
Zusammenfassung
Extremes in δ15N values in mangrove tissues and lichens (range =+4 to −22‰) were measured from a mangrove forest ecosystem located on Twin Cays, offshore islands in Belize, Central America. The N isotopic compositions and concentrations of NH4+/NH3 in porewater, rainwater, and atmospheric ammonia, and the δ15N of lichens, mangrove leaves, roots, stems, and wood were examined to study the biogeochemical processes important for establishing these unusual N isotopic ratios. Dwarfed Rhizophora mangle trees had the most negative δ15N, whereas fringing Rhizophora trees, the most positive δ15N values. Porewater ammonium concentrations had little relationship to N isotopic fractionation in mangrove tissues. In dwarfed mangroves, the δ15N of fine and coarse roots were 6–9‰ more positive than leaf tissue from the same tree, indicating different sources of N for root and leaf tissues. When P was added to dwarfed mangrove trees without added N, δ15N increased within one year from −12‰ to −2‰, approaching the δ15N of porewater ammonium (δ15N=+4‰). Isotopically depleted ammonia in the atmosphere (δ15N=−19‰) and in rainwater (δ15N=−10‰) were found on Twin Cays. We propose that foliar uptake of these atmospheric sources by P-stressed, dwarfed mangrove trees and lichens can explain their very negative δ15N values. In environments where P is limiting for growth, uptake of atmospheric N by Rhizophora mangle may be an important adaptive strategy.
 
Teil von