dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Two years of gaseous emissions from contrasting soils amended with organic and synthetic nitrogen fertilizers.
VerfasserIn D. E. Pelster, M. H. Chantigny, P. Rochette, D. A. Angers, C. Rieux, A. Vanasse
Konferenz EGU General Assembly 2012
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 14 (2012)
Datensatznummer 250064495
 
Zusammenfassung
Animal manures are often used as a source of nitrogen (N) for agriculture; however impacts of amendment type on N2O production may vary. In this study, N2O emissions from two soil types with contrasting texture and carbon (C) content (a silty clay mixed frigid dystric eutrudept and a sandy loam mixed frigid typic dystrudept) were measured for two years under a cool, humid climate. Treatments consisted of a no N control (CTL), calcium ammonium nitrate (CAN), poultry manure (PM), liquid cattle manure (LCM), or liquid swine manure (LSM). The N sources were surface applied and immediately incorporated at 90 kg N ha-1 before seeding of spring wheat (Triticum aestivum L.). Leaching losses of N were also measured using zero-tension lysimeters located at approximately 0.35 m depth. Cumulative growing season N2O-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha-1 yr-1 and were slightly lower in CTL plots than in the fertilized plots (P = 0.067). The mean N2O emission factors ranged from 2.0 to 4.4% of added N with no difference among treatments. Emissions of N2O from the sandy loam soil ranged from 0.3 to 2.2 kg N2O-N ha-1 yr-1, with greatest emissions following PM application (P < 0.001). The N2O emission factor from sandy loam plots amended with PM was 1.7%, more than double that of the other treatments (0.3 to 0.9%), likely because of the high C content of the PM. On the silty clay the yield-based N2O emissions (g N2O-N kg-1 grain yield N) were similar between treatments; while on the sandy loam, they were greatest when amended with PM. Annual N leaching losses averaged 28.7 kg ha-1 for the silty clay and 19.6 kg ha-1 for the sandy loam and were similar for all amendment types suggesting that off-site N2O emissions will also be similar amongst treatments. Preliminary data indicate that overwinter N2O emissions from sandy loam plots were consistently greater when amended with pig slurry compared with unamended soils, and that these overwinter losses may exceed growing season losses. Our findings suggest that compared to mineral N sources, manure application only increases growing season N2O flux in soils with low C content.