|
Titel |
Empirically modelled Pc3 activity based on solar wind parameters |
VerfasserIn |
B. Heilig, S. Lotz, J. Verö, P. Sutcliffe, J. Reda, K. Pajunpää, T. Raita |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
0992-7689
|
Digitales Dokument |
URL |
Erschienen |
In: Annales Geophysicae ; 28, no. 9 ; Nr. 28, no. 9 (2010-09-22), S.1703-1722 |
Datensatznummer |
250016883
|
Publikation (Nr.) |
copernicus.org/angeo-28-1703-2010.pdf |
|
|
|
Zusammenfassung |
It is known that under certain solar wind (SW)/interplanetary magnetic
field (IMF) conditions (e.g. high SW speed, low cone angle) the occurrence of
ground-level Pc3–4 pulsations is more likely. In this paper we demonstrate
that in the event of anomalously low SW particle density, Pc3 activity is
extremely low regardless of otherwise favourable SW speed and cone angle. We
re-investigate the SW control of Pc3 pulsation activity through a statistical
analysis and two empirical models with emphasis on the influence of SW
density on Pc3 activity. We utilise SW and IMF measurements from the OMNI
project and ground-based magnetometer measurements from the MM100 array to
relate SW and IMF measurements to the occurrence of Pc3 activity. Multiple
linear regression and artificial neural network models are used in iterative
processes in order to identify sets of SW-based input parameters, which
optimally reproduce a set of Pc3 activity data. The inclusion of SW density
in the parameter set significantly improves the models. Not only the density
itself, but other density related parameters, such as the dynamic pressure of
the SW, or the standoff distance of the magnetopause work equally well in the
model. The disappearance of Pc3s during low-density events can have at least
four reasons according to the existing upstream wave theory: 1. Pausing the
ion-cyclotron resonance that generates the upstream ultra low frequency waves
in the absence of protons, 2. Weakening of the bow shock that implies less
efficient reflection, 3. The SW becomes sub-Alfvénic and hence it is not
able to sweep back the waves propagating upstream with the Alfvén-speed,
and 4. The increase of the standoff distance of the magnetopause (and of the
bow shock). Although the models cannot account for the lack of Pc3s during
intervals when the SW density is extremely low, the resulting sets of optimal
model inputs support the generation of mid latitude Pc3 activity
predominantly through upstream waves. |
|
|
Teil von |
|
|
|
|
|
|