dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Low-latitude geomagnetic signatures during major solar energetic particle events of solar cycle-23
VerfasserIn R. Rawat, S. Alex, G. S. Lakhina
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 24, no. 12 ; Nr. 24, no. 12 (2006-12-21), S.3569-3583
Datensatznummer 250015727
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-24-3569-2006.pdf
 
Zusammenfassung
The frequency of occurrence of disruptive transient processes in the Sun is enhanced during the high solar activity periods. Solar cycle-23 evidenced major geomagnetic storm events and intense solar energetic particle (SEP) events. The SEP events are the energetic outbursts as a result of acceleration of heliospheric particles by solar flares and coronal mass ejections (CMEs). The present work focuses on the geomagnetic variations at equatorial and low-latitude stations during the four major SEP events of 14 July 2000, 8 November 2000, 24 September 2001 and 4 November 2001. These events have been reported to be of discernible magnitude following intense X-ray flares and halo coronal mass ejections. Low-latitude geomagnetic records evidenced an intense main phase development subsequent to the shock impact on the Earth's magnetosphere. Satellite observations show proton-flux enhancements associated with solar flares for all events. Correlation analysis is also carried out to bring out the correspondence between the polar cap magnetic field perturbations, AE index and the variations of low-latitude magnetic field. The results presented in the current study elucidate the varying storm development processes, and the geomagnetic field response to the plasma and interplanetary magnetic field conditions for the energetic events. An important inference drawn from the current study is the close correspondence between the persistence of a high level of proton flux after the shock in some events and the ensuing intense magnetic storm. Another interesting result is the role of the pre-shock southward IMF Bz duration in generating a strong main phase.
 
Teil von