|
Titel |
Quantifying the biophysical climate change mitigation potential of Canada's forest sector |
VerfasserIn |
C. E. Smyth, G. Stinson, E. Neilson, T. C. Lemprière, M. Hafer, G. J. Rampley, W. A. Kurz |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1726-4170
|
Digitales Dokument |
URL |
Erschienen |
In: Biogeosciences ; 11, no. 13 ; Nr. 11, no. 13 (2014-07-03), S.3515-3529 |
Datensatznummer |
250117502
|
Publikation (Nr.) |
copernicus.org/bg-11-3515-2014.pdf |
|
|
|
Zusammenfassung |
The potential of forests and the forest sector to mitigate greenhouse gas
(GHG) emissions is widely recognized, but challenging to quantify at a
national scale. Forests and their carbon (C) sequestration potential are
affected by management practices, where wood harvesting transfers C out of
the forest into products, and subsequent regrowth allows further C
sequestration. Here we determine the mitigation potential of the
2.3 × 106 km2 of Canada's managed forests from 2015 to
2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3),
a harvested wood products (HWP) model that estimates emissions based on
product half-life decay times, and an account of emission substitution
benefits from the use of wood products and bioenergy. We examine several
mitigation scenarios with different assumptions about forest management
activity levels relative to a base case scenario, including improved growth
from silvicultural activities, increased harvest and residue management for
bioenergy, and reduced harvest for conservation. We combine forest management
options with two mitigation scenarios for harvested wood product use
involving an increase in either long-lived products or bioenergy uses.
Results demonstrate large differences among alternative scenarios, and we
identify potential mitigation scenarios with increasing benefits to the
atmosphere for many decades into the future, as well as scenarios with no net
benefit over many decades. The greatest mitigation impact was achieved
through a mix of strategies that varied across the country and had cumulative
mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050.
There was a trade-off between short-term and long-term goals, in that
maximizing short-term emissions reduction could reduce the forest sector's
ability to contribute to longer-term objectives. We conclude that (i)
national-scale forest sector mitigation options need to be assessed
rigorously from a systems perspective to avoid the development of policies
that deliver no net benefits to the atmosphere, (ii) a mix of strategies
implemented across the country achieves the greatest mitigation impact, and
(iii) because of the time delays in achieving carbon benefits for many
forest-based mitigation activities, future contributions of the forest sector
to climate mitigation can be maximized if implemented soon. |
|
|
Teil von |
|
|
|
|
|
|