dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Tree CH4 fluxes in forestry drained peatland in southern Finland
VerfasserIn Iikka Haikarainen, Anuliina Putkinen, Petteri Pyykkö, Elisa Halmeenmäki, Mari Pihlatie
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250148178
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-12412.pdf
 
Zusammenfassung
Methane (CH4) is among the most important greenhouse gases and its atmospheric concentration is increasing. Boreal forests are commonly considered a net sink of atmospheric CH4 due to CH4 consuming bacteria in aerated soil layers. Recent studies have, however, demonstrated that trees are capable of emitting CH4 from their stems and shoots by transporting anaerobically produced CH4 from deeper soil layers to the atmosphere. Furthermore, trees may act as independent sources of CH4. We have measured tree stem CH4 exchange of boreal tree species at Lettosuo, a nutrient rich peatland forest in Tammela, southern Finland (60˚ 38’ N, 23˚ 57’ E), using the static chamber technique. Three species, downy birch (Betula pubescens), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), were selected under investigation as they represent common boreal tree species. Fluxes of CH4 were measured during 7.6.2016 – 17.10.2016 from in total 25 sample trees growing on two different plots: a treatment plot where all the pines were removed to raise the water table level (WTL) and a control plot. Three birches from the treatment plot were selected to measure CH4 flux variation within vertical profile of the trees. Characterization of microbial communities, quantification of methanogenic and methanotrophic functional genes, and measurements of potential CH4 production and consumption from peat profile and forest floor moss samples were also carried out to obtain insight to the CH4 flux dynamics at the studied sites. The pine removal treatment did not markedly change the average WTL, but it made the WTL more variable with frequently 10–15 cm closer to soil surface compared to the WTL on the control plot. We found small and variable CH4 emissions from the stems of trees on both of the plots, while occasional consumption of CH4 was also present. Generally the CH4 emissions were higher and more dominant at the treatment plot compared to the control plot, and the fluxes were significantly different between the plots (p < 0.001). The CH4 emission rates from the birches at the treatment plot decreased exponentially in the stem vertical profile. Clear seasonal flux dynamics or significant differences in the CH4 flux between the species were not found at either of the plots. Microbial experiments showed that anaerobic CH4 production, CH4 oxidation potential (under 1000 ppm CH4) and the amount of methanogens were higher in the peat of the treatment site. The difference in the CH4 flux rates between the plots indicates that the WTL is a major regulator of tree CH4 emissions on forestry drained peatlands, supporting our hypothesis that the stem emitted CH4 originates from anaerobic soil conditions. This hypothesis is further supported by the results of the microbial analysis and by the observation that more CH4 is emitting from the lower parts of the stems compared to the upper stem.