dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Effect of hypoxia and anoxia on invertebrate behaviour: ecological perspectives from species to community level
VerfasserIn B. Riedel, T. Pados, K. Pretterebner, L. Schiemer, A. Steckbauer, A. Haselmair, M. Zuschin, M. Stachowitsch
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 11, no. 6 ; Nr. 11, no. 6 (2014-03-21), S.1491-1518
Datensatznummer 250117302
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-11-1491-2014.pdf
 
Zusammenfassung
Coastal hypoxia and anoxia have become a global key stressor to marine ecosystems, with almost 500 dead zones recorded worldwide. By triggering cascading effects from the individual organism to the community- and ecosystem level, oxygen depletions threaten marine biodiversity and can alter ecosystem structure and function. By integrating both physiological function and ecological processes, animal behaviour is ideal for assessing the stress state of benthic macrofauna to low dissolved oxygen. The initial response of organisms can serve as an early warning signal, while the successive behavioural reactions of key species indicate hypoxia levels and help assess community degradation. Here we document the behavioural responses of a representative spectrum of benthic macrofauna in the natural setting in the Northern Adriatic Sea (Mediterranean). We experimentally induced small-scale anoxia with a benthic chamber in 24 m depth to overcome the difficulties in predicting the onset of hypoxia, which often hinders full documentation in the field. The behavioural reactions were documented with a time-lapse camera. Oxygen depletion elicited significant and repeatable changes in general (visibility, locomotion, body movement and posture, location) and species-specific reactions in virtually all organisms (302 individuals from 32 species and 2 species groups). Most atypical (stress) behaviours were associated with specific oxygen thresholds: arm-tipping in the ophiuroid Ophiothrix quinquemaculata, for example, with the onset of mild hypoxia (< 2 mL O2 L−1), the emergence of polychaetes on the sediment surface with moderate hypoxia (< 1 mL O2 L−1), the emergence of the infaunal sea urchin Schizaster canaliferus on the sediment with severe hypoxia (< 0.5 mL O2 L−1) and heavy body rotations in sea anemones with anoxia. Other species changed their activity patterns, for example the circadian rhythm in the hermit crab Paguristes eremita or the bioherm-associated crab Pisidia longimana. Intra- and interspecific reactions were weakened or changed: decapods ceased defensive and territorial behaviour, and predator–prey interactions and relationships shifted. This nuanced scale of resolution is a useful tool to interpret present benthic community status (behaviour) and past mortalities (community composition, e.g. survival of tolerant species). This information on the sensitivity (onset of stress response), tolerance (mortality, survival), and characteristics (i.e. life habit, functional role) of key species also helps predict potential future changes in benthic structure and ecosystem functioning. This integrated approach can transport complex ecological processes to the public and decision-makers and help define specific monitoring, assessment and conservation plans.
 
Teil von