dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Spatio-temporal avalanche forecasting with Support Vector Machines
VerfasserIn A. Pozdnoukhov, G. Matasci, M. Kanevski, R. S. Purves
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 11, no. 2 ; Nr. 11, no. 2 (2011-02-09), S.367-382
Datensatznummer 250009153
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-11-367-2011.pdf
 
Zusammenfassung
This paper explores the use of the Support Vector Machine (SVM) as a data exploration tool and a predictive engine for spatio-temporal forecasting of snow avalanches. Based on the historical observations of avalanche activity, meteorological conditions and snowpack observations in the field, an SVM is used to build a data-driven spatio-temporal forecast for the local mountain region. It incorporates the outputs of simple physics-based and statistical approaches used to interpolate meteorological and snowpack-related data over a digital elevation model of the region. The interpretation of the produced forecast is discussed, and the quality of the model is validated using observations and avalanche bulletins of the recent years. The insight into the model behaviour is presented to highlight the interpretability of the model, its abilities to produce reliable forecasts for individual avalanche paths and sensitivity to input data. Estimates of prediction uncertainty are obtained with ensemble forecasting. The case study was carried out using data from the avalanche forecasting service in the Locaber region of Scotland, where avalanches are forecast on a daily basis during the winter months.
 
Teil von