dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Impact of currents on surface flux computations and their feedback on dynamics at regional scales
VerfasserIn A. Olita, I. Iermano, L. Fazioli, A. Ribotti, C. Tedesco, F. Pessini, R. Sorgente
Medientyp Artikel
Sprache Englisch
ISSN 1812-0784
Digitales Dokument URL
Erschienen In: Ocean Science ; 11, no. 4 ; Nr. 11, no. 4 (2015-08-31), S.657-666
Datensatznummer 250117271
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/os-11-657-2015.pdf
 
Zusammenfassung
A twin numerical experiment was conducted in the seas around the island of Sardinia (Western Mediterranean) to assess the impact, at regional and coastal scales, of the use of relative winds (i.e., taking into account ocean surface currents) in the computation of heat and momentum fluxes through standard (Fairall et al., 2003) bulk formulas. The Regional Ocean Modelling System (ROMS) was implemented at 3 km resolution in order to well resolve mesoscale processes, which are known to have a large influence in the dynamics of the area. Small changes (few percent points) in terms of spatially averaged fluxes correspond to quite large differences of such quantities (about 15 %) in spatial terms and in terms of kinetics (more than 20 %). As a consequence, wind power input P is also reduced by ~ 14 % on average. Quantitative validation with satellite SST suggests that such a modification of the fluxes improves the model solution especially in the western side of the domain, where mesoscale activity (as suggested by eddy kinetic energy) is stronger. Surface currents change both in their stable and fluctuating part. In particular, the path and intensity of the Algerian Current and of the Western Sardinia Current (WSC) are impacted by the modification in fluxes. Both total and eddy kinetic energies of the surface current field are reduced in the experiment where fluxes took into account the surface currents. The main dynamical correction is observed in the SW area, where the different location and strength of the eddies influence the path and intensity of the WSC. Our results suggest that, even at local scales and in temperate regions, it would be preferable to take into account such a contribution in flux computations. The modification of the original code, substantially cost-less in terms of numerical computation, improves the model response in terms of surface fluxes (SST validated) and it also likely improves the dynamics as suggested by qualitative comparison with satellite data.
 
Teil von