dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides
VerfasserIn A. Prokop, H. Panholzer
Medientyp Artikel
Sprache Englisch
ISSN 1561-8633
Digitales Dokument URL
Erschienen In: Natural Hazards and Earth System Science ; 9, no. 6 ; Nr. 9, no. 6 (2009-11-19), S.1921-1928
Datensatznummer 250007060
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/nhess-9-1921-2009.pdf
 
Zusammenfassung
Digital elevation models (DEM) are widely used to determine characteristics of mass movement processes such as accumulation and deposition of material, volume estimates or the orientation of discontinuities. To create such DEMs point cloud data is provided by terrestrial laser scanning (TLS) and recently used for analysis of mass movements. Therefore the reliability of TLS data was investigated in a comparative study with tachymetry. The main focus was on the possibility of determining movement patterns of landslides <100 mm. Therefore, several post processing steps are needed and the reliability of those were analyzed. The post processing steps that were investigated include: (1) The registration process is a crucial step considering long term TLS monitoring of an object and can be significantly improved using an iterative closest point (ICP) algorithm; (2) Filtering methods are necessary to create DEMs in order to separate favored laser points on the terrain surface (ground points) from topographically irrelevant points (non-ground-points). Therefore GIS tools were applied. Surfaces with and without vegetation cover were differentiated; (3) Displacement vectors are used to determine slope movement rates. They were created from TLS data after the computation of true orthophotos.

Using the methodology presented it was not possible to determine movement rates <50 mm per period. However, if the quality of the point density is described and areas with very low point density are detected, reliable conclusions can be made regarding slope movement patterns and erosion and deposition of material for changes <100 mm for the investigated slope.
 
Teil von