|
Titel |
Physically-based modelling of granular flows with Open Source GIS |
VerfasserIn |
M. Mergili, K. Schratz, A. Ostermann, W. Fellin |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1561-8633
|
Digitales Dokument |
URL |
Erschienen |
In: Natural Hazards and Earth System Science ; 12, no. 1 ; Nr. 12, no. 1 (2012-01-17), S.187-200 |
Datensatznummer |
250010416
|
Publikation (Nr.) |
copernicus.org/nhess-12-187-2012.pdf |
|
|
|
Zusammenfassung |
Computer models, in combination with Geographic Information Sciences (GIS),
play an important role in up-to-date studies of travel distance, impact area,
velocity or energy of granular flows (e.g. snow or rock avalanches, flows of
debris or mud). Simple empirical-statistical relationships or mass point
models are frequently applied in GIS-based modelling environments. However,
they are only appropriate for rough overviews at the regional scale. In
detail, granular flows are highly complex processes and physically-based,
distributed models are required for detailed studies of travel distance,
velocity, and energy of such phenomena. One of the most advanced theories for
understanding and modelling granular flows is the Savage-Hutter type model, a
system of differential equations based on the conservation of mass and
momentum. The equations have been solved for a number of idealized
topographies, but only few attempts to find a solution for arbitrary
topography or to integrate the model with GIS are known up to now. The work
presented is understood as an initiative to integrate a fully
physically-based model for the motion of granular flows, based on the
extended Savage-Hutter theory, with GRASS, an Open Source GIS software
package. The potentials of the model are highlighted, employing the Val Pola
Rock Avalanche (Northern Italy, 1987) as the test event, and the limitations as
well as the most urging needs for further research are discussed. |
|
|
Teil von |
|
|
|
|
|
|