dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Using connectivity to assess soil erosion in the landscape; applications of a new paradigm in soil erosion modelling
VerfasserIn Lorenzo Borselli, Olga Vigiak, Azalea Judith Ortiz Rodriguez
Konferenz EGU General Assembly 2013
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 15 (2013)
Datensatznummer 250077707
 
Zusammenfassung
Hydrologic and sedimentological connectivity concepts recently appeared as novel paradigms (Bracken and Croke , 2007) and tools to assess soil erosion at various scales. The landscape flow connectivity index IC (Borselli et al. 2007, 2008) is based on the ratio of hydrological distance to streams with the potential upstream runoff occurrence, hence allows mapping surface runoff connectivity and erosion across the landscape. After its first introduction, several studies applied the IC algorithm in very different geographic regions and territorial scale: 150 km2 watershed in Tuscany (Italy; Borselli et al. 2007, 2008); 20 small catchments (5 to 350 ha) in Murcia (Spain; Sougnez et al. 2011); 400 km2 watershed in Basilicata (South Italy; Borselli et al. 2011); 3300 km2 watershed in Victoria (Australia; Vigiak et al. 2012); 6 and 8 km2watersheds in the Italian Alps (Cavalli et al., in press); 74 ha catchment in Spanish Pre-Pyrenees (López-Vicente et al. 2013). Meanwhile, the IC index has been adapted for application to different erosion processes, i.e. hillslope erosion (Vigiak et al. 2012; López-Vicente et al. 2013), sediment remobilization by shallow landslides (Borselli et al. 2011), and debris flow (Cavalli et al. in press). Validation of IC index applications in spatially distributed erosion models has been conducted with field observations at hillslope scale, calibration against sediment yield estimates at several monitoring stations. These scientific results highlight the promising potential application of IC concept for erosion modelling. In this session, the IC model with all its proposed variants will be described. Future work perspectives, including potential developments of IC approach as an alternative method to classical soil erosion modelling, will be discussed. Acknowledgement: This study has been funded by CONACYT (Mexico); Proyecto CB-2012-01/184060