dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Automatic extraction of faults and fractal analysis from remote sensing data
VerfasserIn R. Gloaguen, P. R. Marpu, I. Niemeyer
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 14, no. 2 ; Nr. 14, no. 2 (2007-03-22), S.131-138
Datensatznummer 250012158
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-14-131-2007.pdf
 
Zusammenfassung
Object-based classification is a promising technique for image classification. Unlike pixel-based methods, which only use the measured radiometric values, the object-based techniques can also use shape and context information of scene textures. These extra degrees of freedom provided by the objects allow the automatic identification of geological structures. In this article, we present an evaluation of object-based classification in the context of extraction of geological faults. Digital elevation models and radar data of an area near Lake Magadi (Kenya) have been processed. We then determine the statistics of the fault populations. The fractal dimensions of fault dimensions are similar to fractal dimensions directly measured on remote sensing images of the study area using power spectra (PSD) and variograms. These methods allow unbiased statistics of faults and help us to understand the evolution of the fault systems in extensional domains. Furthermore, the direct analysis of image texture is a good indicator of the fault statistics and allows us to classify the intensity and type of deformation. We propose that extensional fault networks can be modeled by iterative function system (IFS).
 
Teil von