dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm
VerfasserIn S. Hong, X. Yu, S. K. Park, Y.-S. Choi, B. Myoung
Medientyp Artikel
Sprache Englisch
ISSN 1991-959X
Digitales Dokument URL
Erschienen In: Geoscientific Model Development ; 7, no. 5 ; Nr. 7, no. 5 (2014-10-29), S.2517-2529
Datensatznummer 250115747
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/gmd-7-2517-2014.pdf
 
Zusammenfassung
Optimization of land surface models has been challenging due to the model complexity and uncertainty. In this study, we performed scheme-based model optimizations by designing a framework for coupling "the micro-genetic algorithm" (micro-GA) and "the Noah land surface model with multiple physics options" (Noah-MP). Micro-GA controls the scheme selections among eight different land surface parameterization categories, each containing 2–4 schemes, in Noah-MP in order to extract the optimal scheme combination that achieves the best skill score. This coupling framework was successfully applied to the optimizations of evapotranspiration and runoff simulations in terms of surface water balance over the Han River basin in Korea, showing outstanding speeds in searching for the optimal scheme combination. Taking advantage of the natural selection mechanism in micro-GA, we explored the model sensitivity to scheme selections and the scheme interrelationship during the micro-GA evolution process. This information is helpful for better understanding physical parameterizations and hence it is expected to be effectively used for further optimizations with uncertain parameters in a specific set of schemes.
 
Teil von