dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Information theoretic measures of dependence, compactness, and non-gaussianity for multivariate probability distributions
VerfasserIn A. H. Monahan, T. DelSole
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 16, no. 1 ; Nr. 16, no. 1 (2009-02-06), S.57-64
Datensatznummer 250013087
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-16-57-2009.pdf
 
Zusammenfassung
A basic task of exploratory data analysis is the characterisation of "structure" in multivariate datasets. For bivariate Gaussian distributions, natural measures of dependence (the predictive relationship between individual variables) and compactness (the degree of concentration of the probability density function (pdf) around a low-dimensional axis) are respectively provided by ordinary least-squares regression and Principal Component Analysis. This study considers general measures of structure for non-Gaussian distributions and demonstrates that these can be defined in terms of the information theoretic "distance" (as measured by relative entropy) between the given pdf and an appropriate "unstructured" pdf. The measure of dependence, mutual information, is well-known; it is shown that this is not a useful measure of compactness because it is not invariant under an orthogonal rotation of the variables. An appropriate rotationally invariant compactness measure is defined and shown to reduce to the equivalent PCA measure for bivariate Gaussian distributions. This compactness measure is shown to be naturally related to a standard information theoretic measure of non-Gaussianity. Finally, straightforward geometric interpretations of each of these measures in terms of "effective volume" of the pdf are presented.
 
Teil von