dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Wetland restoration and methanogenesis: the activity of microbial populations and competition for substrates at different temperatures
VerfasserIn V. Jerman, M. Metje, I. Mandić-Mulec, P. Frenzel
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 6, no. 6 ; Nr. 6, no. 6 (2009-06-29), S.1127-1138
Datensatznummer 250003844
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-6-1127-2009.pdf
 
Zusammenfassung
Ljubljana marsh in Slovenia is a 16 000 ha area of partly drained fen, intended to be flooded to restore its ecological functions. The resultant water-logging may create anoxic conditions, eventually stimulating production and emission of methane, the most important greenhouse gas next to carbon dioxide. We examined the upper layer (~30 cm) of Ljubljana marsh soil for microbial processes that would predominate in water-saturated conditions, focusing on the potential for iron reduction, carbon mineralization (CO2 and CH4 production), and methane emission. Methane emission from water-saturated microcosms was near minimum detectable levels even after extended periods of flooding (>5 months). Methane production in anoxic soil slurries started only after a lag period of 84 d at 15°C and a minimum of 7 d at 37°C, the optimum temperature for methanogenesis. This lag was inversely related to iron reduction, which suggested that iron reduction out-competed methanogenesis for electron donors, such as H2 and acetate. Methane production was observed only in samples incubated at 14–38°C. At the beginning of methanogenesis, acetoclastic methanogenesis dominated. In accordance with the preferred substrate, most (91%) mcrA (encoding the methyl coenzyme-M reductase, a key gene in methanogenesis) clone sequences could be affiliated to the acetoclastic genus Methanosarcina. No methanogens were detected in the original soil. However, a diverse community of iron-reducing Geobacteraceae was found. Our results suggest that methane emission can remain transient and low if water-table fluctuations allow re-oxidation of ferrous iron, sustaining iron reduction as the most important process in terminal carbon mineralization.
 
Teil von