dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Continuous atmospheric CO2 and its δ13C measurements (2012-2014) at Environment Research Station Schneefernerhaus, Germany
VerfasserIn Homa Ghasemifard, Ye Yuan, Marvin Luepke, Jia Chen, Ludwig Ries, Annette Menzel
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250139112
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-2288.pdf
 
Zusammenfassung
This study presents continuous measurement of atmospheric CO2 and δ13C by PICARRO Wavelength-Scanned Cavity Ring Down Spectrometer (WS-CRDS, G1101- i) for a period of two and a half years at the remote Global Atmosphere Watch (GAW) site Environment Research Station Schneefernerhaus (UFS, Germany, 2650 m a.s.l). Both water vapor and methane concentration show spectroscopic interferences with CO2 and δ13C in this measuring device. Without analyzer upgrade to account automatically for these effects, we present approaches for corrections for δ13C and CO2 mixing ratio as well as test the precision and stability of the device. The mean annual cycle from May 2012 to November 2014 exhibited peak-to-peak amplitudes of 13.34 ppm for CO2 and 1.82 ‰ for δ13C. Regarding CO2 mean diurnal cycle, daily maxima occurred around noon and daily minima in the afternoon. However, clear seasonal differences can be observed. For δ13C, the minimum of diurnal cycle occurred in the morning and the maximum in the afternoon with peak-to peak amplitude of around 0.4 ‰ in summer, 0.2 ‰ both in spring and autumn and no diurnal cycle in winter. HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) was used to calculate 96 hours backward trajectories reaching at UFS with an altitude of 1500 m a.g.l to characterize the origin of air masses transported to the site. Trajectories clustering resulted in five major directions, which were from west (41.2 %), southwest (14.8 %), northwest (19.7 %), southeast (12.5 %) and northeast (11.8 %). Wind speed and wind direction showed clear influences on CO2 mixing ratio. Higher levels of CO2 mixing ratio were measured at wind speeds higher than 6 m s−1 from the northwest, northeast and southwest. The research is financed by the Bavarian State Ministry of the Environment and Consumer Protection.