dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Geometry of duskside equatorial current during magnetic storm main phase as deduced from magnetospheric and low-altitude observations
VerfasserIn S. Dubyagin, N. Ganushkina, S. Apatenkov, M. Kubyshkina, H. Singer, M. Liemohn
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 31, no. 3 ; Nr. 31, no. 3 (2013-03-04), S.395-408
Datensatznummer 250019001
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-31-395-2013.pdf
 
Zusammenfassung
We present the results of a coordinated study of the moderate magnetic storm on 22 July 2009. The THEMIS and GOES observations of magnetic field in the inner magnetosphere were complemented by energetic particle observations at low altitude by the six NOAA POES satellites. Observations in the vicinity of geosynchronous orbit revealed a relatively thin (half-thickness of less than 1 RE) and intense current sheet in the dusk MLT sector during the main phase of the storm. The total westward current (integrated along the z-direction) on the duskside at r ~ 6.6 RE was comparable to that in the midnight sector. Such a configuration cannot be adequately described by existing magnetic field models with predefined current systems (error in B > 60 nT). At the same time, low-altitude isotropic boundaries (IB) of > 80 keV protons in the dusk sector were shifted ~ 4° equatorward relative to the IBs in the midnight sector. Both the equatorward IB shift and the current strength on the duskside correlate with the Sym-H* index. These findings imply a close relation between the current intensification and equatorward IB shift in the dusk sector. The analysis of IB dispersion revealed that high-energy IBs (E > 100 keV) always exhibit normal dispersion (i.e., that for pitch angle scattering on curved field lines). Anomalous dispersion is sometimes observed in the low-energy channels (~ 30–100 keV). The maximum occurrence rate of anomalous dispersion was observed during the main phase of the storm in the dusk sector.
 
Teil von