dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel New algorithm for integration between wireless microwave sensor network and radar for improved rainfall measurement and mapping
VerfasserIn Y. Liberman, R. Samuels, P. Alpert, H. Messer
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 7, no. 10 ; Nr. 7, no. 10 (2014-10-17), S.3549-3563
Datensatznummer 250115935
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-7-3549-2014.pdf
 
Zusammenfassung
One of the main challenges for meteorological and hydrological modelling is accurate rainfall measurement and mapping across time and space. To date, the most effective methods for large-scale rainfall estimates are radar, satellites, and, more recently, received signal level (RSL) measurements derived from commercial microwave networks (CMNs). While these methods provide improved spatial resolution over traditional rain gauges, they have their limitations as well. For example, wireless CMNs, which are comprised of microwave links (ML), are dependant upon existing infrastructure and the ML' arbitrary distribution in space. Radar, on the other hand, is known in its limitation for accurately estimating rainfall in urban regions, clutter areas and distant locations. In this paper the pros and cons of the radar and ML methods are considered in order to develop a new algorithm for improving rainfall measurement and mapping, which is based on data fusion of the different sources. The integration is based on an optimal weighted average of the two data sets, taking into account location, number of links, rainfall intensity and time step. Our results indicate that, by using the proposed new method, we not only generate more accurate 2-D rainfall reconstructions, compared with actual rain intensities in space, but also the reconstructed maps are extended to the maximum coverage area. By inspecting three significant rain events, we show that our method outperforms CMNs or the radar alone in rain rate estimation, almost uniformly, both for instantaneous spatial measurements, as well as in calculating total accumulated rainfall. These new improved 2-D rainfall maps, as well as the accurate rainfall measurements over large areas at sub-hourly timescales, will allow for improved understanding, initialization, and calibration of hydrological and meteorological models mainly necessary for water resource management and planning.
 
Teil von