|
Titel |
Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images |
VerfasserIn |
C. J. Legleiter, M. Tedesco, L. C. Smith, A. E. Behar, B. T. Overstreet |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1994-0416
|
Digitales Dokument |
URL |
Erschienen |
In: The Cryosphere ; 8, no. 1 ; Nr. 8, no. 1 (2014-02-06), S.215-228 |
Datensatznummer |
250116018
|
Publikation (Nr.) |
copernicus.org/tc-8-215-2014.pdf |
|
|
|
Zusammenfassung |
Recent melt events on the Greenland ice sheet (GrIS) accentuate the need to
constrain estimates of sea level rise through improved characterization of
meltwater pathways. This effort will require more precise estimates of the
volume of water stored on the surface of the GrIS. We assessed the potential
to obtain such information by mapping the bathymetry of supraglacial lakes
and streams from WorldView2 (WV2) satellite images. Simultaneous in situ
observations of depth and reflectance from two streams and a lake with
measured depths up to 10.45 m were used to test a spectrally based depth
retrieval algorithm. We performed optimal band ratio analysis (OBRA) of
continuous field spectra and spectra convolved to the bands of the WV2,
Landsat 7 (ETM+), MODIS, and ASTER sensors. The field spectra yielded a
strong relationship with depth (R2 = 0.94), and OBRA R2 values were
nearly as high (0.87–0.92) for convolved spectra, suggesting that these
sensors' broader bands would be sufficient for depth retrieval. Our field
measurements thus indicated that remote sensing of supraglacial bathymetry is
not only feasible but potentially highly accurate. OBRA of spectra from
2 m-pixel WV2 images acquired within 3–72 h of our field observations
produced an optimal R2 value of 0.92 and unbiased, precise depth
estimates, with mean and root mean square errors < 1% and 10–25% of
the mean depth. Bathymetric maps produced by applying OBRA relations revealed
subtle features of lake and channel morphology. In addition to providing
refined storage volume estimates for lakes of various sizes, this approach
can help provide estimates of the transient flux of meltwater through
streams. |
|
|
Teil von |
|
|
|
|
|
|