dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Effect of tropical cyclones on the tropical tropopause parameters observed using COSMIC GPS RO data
VerfasserIn S. Ravindra Babu, M. Venkat Ratnam, G. Basha, B. V. Krishnamurthy, B. Venkateswararao
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 15, no. 18 ; Nr. 15, no. 18 (2015-09-16), S.10239-10249
Datensatznummer 250120033
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-15-10239-2015.pdf
 
Zusammenfassung
Tropical cyclones (TCs) are deep convective synoptic-scale systems that play an important role in modifying the thermal structure, tropical tropopause parameters and hence also modify stratosphere–troposphere exchange (STE) processes. In the present study, high vertical resolution and high accuracy measurements from COSMIC Global Positioning System (GPS) radio occultation (RO) measurements are used to investigate and quantify the effect of tropical cyclones that occurred over Bay of Bengal and Arabian Sea in the last decade on the tropical tropopause parameters. The tropopause parameters include cold-point tropopause altitude (CPH) and temperature (CPT), lapse-rate tropopause altitude (LRH) and temperature (LRT) and the thickness of the tropical tropopause layer (TTL), that is defined as the layer between convective outflow level (COH) and CPH, obtained from GPS RO data. From all the TC events, we generate the mean cyclone-centred composite structure for the tropopause parameters and removed it from the climatological mean obtained from averaging the GPS RO data from 2002 to 2013. Since the TCs include eye, eye walls and deep convective bands, we obtained the tropopause parameters based on radial distance from the cyclone eye. In general, decrease in the CPH in the eye is noticed as expected. However, as the distance from the cyclone eye increases by 300, 400, and 500 km, an enhancement in CPH (CPT) and LRH (LRT) is observed. Lowering of CPH (0.6 km) and LRH (0.4 km) values with coldest CPT and LRT (2–3 K) within a 500 km radius of the TC centre is noticed. Higher (2 km) COH leading to the lowering of TTL thickness (2–3 km) is clearly observed. There are multiple tropopause structures in the profiles of temperature obtained within 100 km from the centre of the TC. These changes in the tropopause parameters are expected to influence the water vapour transport from the troposphere to the lower stratosphere, and ozone from the lower stratosphere to the upper troposphere, hence influencing STE processes.
 
Teil von