dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Influence of CeO2 nanoparticles on growth and physiology of sorghum
VerfasserIn Linlin Mu, Wei-zhen Liang, Erin Kinsey, Bradley Rauh, Stephen Kresovich, Christophe Darnault
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250130782
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-11087.pdf
 
Zusammenfassung
Cerium oxide nanoparticles (CeO2 NPs) are commonly used as polishing agents for industry and fuel additives to decrease the particulate matter emissions. CeO2 NPs may be encountered in the soil and water environment through their life cycle or accidental releases, and have potential phytotoxicity effects. Therefore, it is critical to assess the potential effects of CeO2 NPs in soil on plant growth and physiology. The objective of this research is to determine the physiological responses of three sorghums (Grassl, BtX623 and Rio) to the effect of CeO2 nanoparticles in potting soil environment. Sorghums were germinated and grown in potting soil in the greenhouse for three weeks cultivation with treatments of 0, 100, 500, 1000 mg CeO2 NPs per kg soil. Plant parameters, such as length, weight, and biomass of root and leaves were measured in each treatment with 12 replications. After three weeks germination, the sorghum plants were dig out and the roots were examined and scanned by the Silverfast SE Plus scanner to compare and analyze their dimensions and shapes. To further study the growth and physiological changes in plants due to the presence of CeO2 NPs in soil, one selected type of sorghum (Grassl) was grown under the four different CeO2 NPs concentration treatments for six months until plant maturity, and was also cut and harvested three times to study CeO2 NPs effect on plant re-growth. At the end of each growing period, above ground vegetative tissues were air-dried, grounded to 2mm particle size and compositional traits were estimated by using near-infrared spectroscopy. The influence of nanoparticles was observed on some of the plant traits. Preliminary results showed the influence of CeO2 NPs on the roots growth, as Grassl and Btx623 in 100 mgkg−1 treatment grew significantly faster than other concentrations; however no significant difference between control and 100 mgkg−1 treatment in Rio. CeO2 NPs concentration of 100 mgkg−1 had no impact on sorghum growth, compared to the control treatment. Results of the six months growth and repetitive cutting experiments indicated that the different treatments, including the presence and/or concentrations of the nanoparticles, impacted some of the compositional traits of sorghum.