dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel The effect of relative humidity on the detection of pyrrole by PTR-MS for OH reactivity measurements
VerfasserIn V. Sinha, T. G. Custer, T. Kluepfel, J. Williams
Konferenz EGU General Assembly 2009
Medientyp Artikel
Sprache Englisch
Digitales Dokument PDF
Erschienen In: GRA - Volume 11 (2009)
Datensatznummer 250025737
 
Zusammenfassung
The hydroxyl radical (OH) is the most important atmospheric oxidant. Recently Sinha et al. [1] developed a new method to measure the total OH reactivity of ambient air (OH sink) employing a proton transfer reaction mass spectrometer (PTR-MS) as a detector. The new method uses pyrrole (C4H4NH) as a reagent and for an OH reactivity measurement this species must be measured under both dry (~ 0% RH) and humid air ( > 30% RH). Here, we investigate the sensitivity dependence of the PTR-MS for pyrrole, as a function of relative humidity in the sampled air. Various normalizations with respect to the H3O+ ion and its different hydrated clusters ions H3O+(H2O)n=1,2,3 are compared. It is shown that both the primary ion signal (H3O+ ion m/z = 19) and the first water cluster ion H3O+(H2O) (m/z = 37) should be used for pyrrole quantification. However, in spite of using this normalization, the PTR-MS sensitivity for pyrrole changes by as much as 16 % between dry (~ 0% RH) and humid air (above 30 % RH), with higher sensitivity when the sampled air is humid. Thus, for accurate quantification of pyrrole using a PTR-MS, calibration factors appropriate to dry and humid air should be employed. We recommend that humidity dependence of the PTR-MS be taken into account when reactivity measurements are performed using the pyrrole based comparative reactivity method (CRM). [1]. V. Sinha, J. Williams, J.N. Crowley, and J. Lelieveld, Atmos. Chem. Phys. 8 (2008) 2213-2227