dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Isotopic re-equilibration of fluid inclusions in natural speleothem by artificial heating
VerfasserIn Ryu Uemura, Yudai Kina
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250142342
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-5951.pdf
 
Zusammenfassung
Isotopic compositions of inclusion water in speleothems are promising new climatic proxies. Oxygen isotope ratio of water (δ18O) may provide direct estimate for past temperature changes. Several studies, however, used hydrogen isotope ratio of water (δD) because the δ18O may be affected by re-equilibration between water and host calcite. Thus, precise knowledge about magnitude and reaction rate of the re-equilibration has a fundamental importance for paleoclimate studies using speleothems. To evaluate the re-equilibration effect, we measured isotope composition of fluid inclusions in natural stalagmites, which had been heated in laboratory before isotope measurement. Several (3-5) subsamples were cut from the same depth of stalagmites. Then, each sub-sample was heated at different interval (0 – 80 hours) under continuous evacuation using a turbomolecular pump. The experiments were conducted under three different temperatures (25, 70, and 105˚ C). The δ18O and δD values of fluid inclusions in a sub-sample was measured using a semi-automated system, which was modified based on cavity ring-down spectroscopy technique (Uemura et al., 2016). Under the 105˚ C hating, the inclusion δ18O value of a layer shows a small increase from the initial to ca.30 hours heating, and then after that it appears to stay flat. This preliminary result suggests that a limited amount of calcite reacts with inclusion water, and ca. 5% of fluid inclusion water may be re-equilibrated with surrounding host calcite at the 105˚ C. The magnitude of re-equilibration effect is not significant for estimating glacial-interglacial temperature changes but measurable. On the other hand, the δ18O value shows no trend under the room temperature experiment. The δD value shows no trend at any experimental conditions, suggesting that loss of inclusion water during long-time evacuation does not cause the δ18O enrichment. Uemura, R. et al. (2016) Precise oxygen and hydrogen isotopic determination of speleothem inclusion water in nanoliter quantities using cavity ring-down spectroscopic techniques, Geochimica et Cosmochimica Acta, 172, 159-176, doi:10.1016/j.gca.2015.09.017