dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRI
VerfasserIn L. Bugliaro, T. Zinner, C. Keil, B. Mayer, R. Hollmann, M. Reuter, W. Thomas
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 11, no. 12 ; Nr. 11, no. 12 (2011-06-17), S.5603-5624
Datensatznummer 250009848
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-11-5603-2011.pdf
 
Zusammenfassung
Validation of cloud properties retrieved from passive spaceborne imagers is essential for cloud and climate applications but complicated due to the large differences in scale and observation geometry between the satellite footprint and the independent ground based or airborne observations. Here we illustrate and demonstrate an alternative approach: starting from the output of the COSMO-EU weather model of the German Weather Service realistic three-dimensional cloud structures at a spatial scale of 2.33 km are produced by statistical downscaling and microphysical properties are associated to them. The resulting data sets are used as input to the one-dimensional radiative transfer model libRadtran to simulate radiance observations for all eleven low resolution channels of MET-8/SEVIRI. At this point, both cloud properties and satellite radiances are known such that cloud property retrieval results can be tested and tuned against the objective input "truth". As an example, we validate a cloud property retrieval of the Institute of Atmospheric Physics of DLR and that of EUMETSAT's Climate Monitoring Science Application Facility CMSAF. Cloud detection and cloud phase assignment perform well. By both retrievals 88% of the pixels are correctly classified as clear or cloudy. The DLR algorithm assigns the correct thermodynamic phase to 95% of the cloudy pixels and the CMSAF retrieval to 84%. Cloud top temperature is slightly overestimated by the DLR code (+3.1 K mean difference with a standard deviation of 10.6 K) and to a very low extent by the CMSAF code (−0.12 K with a standard deviation of 7.6 K). Both retrievals account reasonably well for the distribution of optical thickness for both water and ice clouds, with a tendency to underestimation. Cloud effective radii are most difficult to evaluate but the APICS algorithm shows that realistic histograms of occurrences can be derived (CMSAF was not evaluated in this context). Cloud water path, which is a combination of the last two quantities, is slightly underestimated by APICS, while CMSAF shows a larger scattering.
 
Teil von