dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A framework for using connectivity to measure and model water and sediment fluxes
VerfasserIn Saskia Keessta, Patricia Saco, Joao Nunes, Tony Parsons, Ronny Poeppl, Paulo Pereira, Agata Novara, Jesús Rodrígo Comino, Antonio Jordán, Rens Masselink, Artemi Cerdà
Konferenz EGU General Assembly 2017
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 19 (2017)
Datensatznummer 250151064
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2017-15607.pdf
 
Zusammenfassung
For many years, scientists have tried to understand, describe and quantify water and sediment fluxes at multiple scales (Cerdà et al., 2013; Parsons et al., 2015; Poeppl et al., 2016; Masselink et al., 2016a; Rodrigo Comino et al., 2016). In the past two decades, a new concept called connectivity has been used by Earth Scientists as a means to describe and quantify the influences on the fluxes of water and sediment on different scales: aggregate, pedon, location on the slope, slope, watershed, and basin (Baartman et al., 2013; Parsons et al., 2015; López-Vicente et al., 2015; 2016; Masselink 2016b; Marchamalo et al., 2016; Mekonnen et al., 2016). A better understanding of connectivity can enhance our comprehension of landscape processes and provide a basis for the development of better measurement and modelling approaches, further leading to a better potential for implementing this concept as a management tool. Our research provides a short review of the State-of-the-Art of the connectivity concept, from which we conclude that scientists have been struggling to find a way to quantify connectivity so far. We adapt the knowledge of connectivity to better understand and quantify water and sediment transfers in catchment systems. First, we introduce a new approach to the concept of connectivity to study water and sediment transfers. In this approach water and sediment dynamics are divided in two parts: the system consists of phases and fluxes, each being separately measurable. This approach enables us to: i) better conceptualize our understanding of system dynamics at different timescales, including long timescales; ii) identify the main parameters driving system dynamics, and devise monitoring strategies which capture them; and, iii) build models with a holistic approach to simulate system dynamics without excessive complexity. Secondly, we discuss the role of system boundaries in designing measurement schemes and models. Natural systems have boundaries within which sediment connectivity varies between phases; in (semi-)arid regions these boundaries can be far apart in time due to extreme events. External disturbances (eg. climate change, changed land management) can change these boundaries. It is therefore important to consider the system state as a whole, including its boundaries and internal dynamics, when designing and implementing comprehensive monitoring and modelling approaches. Keywords: Connectivity, catchment systems, measuring and modelling approaches, co-evolution, management, boundary conditions, fire effects. Acknowledgements This research received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n_ 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Baartman, J.E.M., Masselink, R.H., Keesstra, S.D., Temme, A.J.A.M., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38: 1457-1471. Cerdà A, Brazier R, Nearing M, de Vente J. 2013. Scales and erosion. CATENA 102: 1-2. DOI: 10.1016/j.catena.2011.09.006 López-Vicente, M., E. Nadal-Romero, and E. L. H. Cammeraat. 2016. Hydrological Connectivity does Change Over 70 Years of Abandonment and Afforestation in the Spanish Pyrenees. Land Degradation and Development. doi:10.1002/ldr.2531. López-Vicente, M., L. Quijano, L. Palazón, L. Gaspar, and A. Navas. 2015. Assessment of Soil Redistribution at Catchment Scale by Coupling a Soil Erosion Model and a Sediment Connectivity Index (Central Spanish Pre-Pyrenees). Cuadernos De Investigacion Geografica 41 (1): 127-147. doi:10.18172/cig.2649. Marchamalo, M., J. M. Hooke, and P. J. Sandercock. 2016. Flow and Sediment Connectivity in Semi-Arid Landscapes in SE Spain: Patterns and Controls. Land Degradation and Development 27 (4): 1032-1044. doi:10.1002/ldr.2352. Masselink RJH, Heckmann T, Temme AJAM, Anders NS, Gooren HPA, Keesstra SD. 2016a. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes. DOI: 10.1002/hyp.10993 Masselink, R. J. H., S. D. Keesstra, A. J. A. M. Temme, M. Seeger, R. Giménez, and J. Casalí. 2016b. Modelling Discharge and Sediment Yield at Catchment Scale using Connectivity Components. Land Degradation and Development 27 (4): 933-945. doi:10.1002/ldr.2512. Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., Maroulis, J., Reducing sediment connectivity through man-made and natural sediment sinks in the Minizr catchment, north-west Ethiopia. Accepted to Land Degradation and Development. Parsons A.J., Bracken L., Peoppl , R., Wainwright J., Keesstra, S.D., 2015. Editorial: Introduction to special issue on connectivity in water and sediment dynamics. In press in Earth Surface Processes and Landforms. DOI: 10.1002/esp.3714 Parsons A.J., Bracken L., Peoppl , R., Wainwright J., Keesstra, S.D., 2015. Editorial: Introduction to special issue on connectivity in water and sediment dynamics. In press in Earth Surface Processes and Landforms. DOI: 10.1002/esp.3714 Poeppl, R.,E. Maroulis, J., Keesstra, S.D., 2016. Geomorphology. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems. http://dx.doi.org/10.1016/j.geomorph.2016.07.033 Rodrigo Comino, J., Iserloh, T., Lassu, T., Cerdà, A., Keesstra, S.D., Prosdocimi, M., Brings, C., Marzen, M., Ramos, M.C., Senciales, J.M., Ruiz Sinoga, J.D., Seeger, M., Ries, J.B., 2016. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Science of the Total Environment. In press DOI:10.1016/j.scitotenv.2016.05.163