dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Local flux-profile relationships of wind speed and temperature in a canopy layer in atmospheric stable conditions
VerfasserIn G. Zhang, M. Y. Leclerc, A. Karipot
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 7, no. 11 ; Nr. 7, no. 11 (2010-11-12), S.3625-3636
Datensatznummer 250005060
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-7-3625-2010.pdf
 
Zusammenfassung
The particularities of the physics of the canopy layer pose challenges to the determination and use of traditional universal functions so helpful in the atmospheric surface layer. Progress toward "universal-like functions" such as those provided by Monin-Obukhov similarity theory for the canopy layer has been modest. One of the challenges lies in that the assumptions underlying Monin-Obukhov similarity theory do not hold within a canopy layer. This paper thus examines the local flux-profile relations for wind (Φm) and for temperature (Φh). It uses three different stability parameters, i.e., h/L(h) at tree top, local z/L(z), and the local bulk Richardson number (Ri), within a tall forest canopy in nighttime stable (indicated by h/L(h) > 0) conditions. Results suggest that the in-canopy Φm can be described using the local Richardson number Ri. Furthermore, Φm is found to increase linearly with Ri in the upper canopy layer for |Ri| < 1. When local |Ri| > 1, |Φm| decreases with |Ri| in a power function, a result consistent for all levels of measurements within the canopy. When both local Φh and local Ri are positive, i.e., the local downward turbulent heat flux is consistent with the local temperature gradient, the local Φh increases with the local Ri when Ri < 1. However, Φh does not change with Ri (or much more scattered) when Ri > 1. The relationship between local Φh and Ri disappears when counter-gradient heat transfer occurs in strongly stable conditions. A self-correlation analysis is used to examine the influence of self-correlation and the physical meaning of these relationships.
 
Teil von