dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Will the role of intercontinental transport change in a changing climate?
VerfasserIn T. Glotfelty, Y. Zhang, P. Karamchandani, D. G. Streets
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 14, no. 17 ; Nr. 14, no. 17 (2014-09-10), S.9379-9402
Datensatznummer 250119019
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-14-9379-2014.pdf
 
Zusammenfassung
Intercontinental transport of atmospheric pollution (ITAP) can offset the impact of local emission control efforts, impact human and ecosystem health, and play a role in climate forcing. This study aims to determine the role of ITAP caused by East Asian anthropogenic emissions (EAAEs) under current and future emission and climate scenarios. The contribution from EAAEs is determined using a "brute force method" in which results from simulations with and without EAAEs are compared. ITAP from East Asia is enhanced in the future due to faster wind speeds aloft and a stronger low pressure center near eastern Russia that facilitate enhanced westerly export in the free troposphere and stronger southerly transport near the surface, increased gaseous precursor emissions, and increased temperatures. As a result, the contribution of ozone (O3) generated by EAAEs to the global average O3 mixing ratio increases by ~0.8 ppb from 1.2 ppb in 2001 to 2.0 ppb in 2050. The contribution of PM2.5 generated by EAAEs to the global PM2.5 level increases by ~0.07 μg m−3 from 0.32 μg m−3 in 2001 to 0.39 μg m−3 in 2050, despite a non-homogenous response in PM2.5 resulting from cloud and radiative feedbacks. EAAEs can increase East Asian biogenic secondary organic aerosol by 10–81%, indicating that it is largely controllable. EAAEs also increase the deposition of nitrogen, black carbon, and mercury both locally and downwind, implying that they may play a role in climate feedbacks and ecosystem health of these regions. These results show that EAAEs have a large impact on global air quality and climate, especially on downwind regions. Such impacts may be enhanced under future climate and emission scenarios, demonstrating a need to synergize global pollution control and climate mitigation efforts.
 
Teil von