dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Technical Note: A simple method for vaterite precipitation for isotopic studies: implications for bulk and clumped isotope analysis
VerfasserIn T. Kluge, C. M. John
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 12, no. 11 ; Nr. 12, no. 11 (2015-06-03), S.3289-3299
Datensatznummer 250117962
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-12-3289-2015.pdf
 
Zusammenfassung
Calcium carbonate (CaCO3) plays an important role in the natural environment as a major constituent of the skeleton and supporting structure of marine life and has high economic importance as an additive in food, chemicals and medical products. Anhydrous CaCO3 occurs in the three different polymorphs calcite, aragonite and vaterite, whereof calcite is the most abundant and best characterized mineral. In contrast, little is known about the rare polymorph vaterite, in particular with regard to the oxygen isotope fractionation between H2O and the mineral.

Synthetic precipitation of vaterite in the laboratory typically involves rapid processes and isotopic non-equilibrium, which excludes isotope studies focused on the characterization of vaterite under equilibrium conditions. Here, we used a new experimental approach that enables vaterite mineral formation from an isotopically equilibrated solution. The solution consists of a ~0.007 mol L−1 CaCO3 solution that is saturated with NaCl at room temperature (up to 6.4 mol L−1). Vaterite precipitated as single phase or major phase (≥94%) in experiments performed between 23 and 91 °C. Only at 80 °C was vaterite a minor phase with a relative abundance of 27%. The high mineral yield per experiment of up to 235 mg relative to the initially dissolved CaCO3 amount of on average 360 mg enables an investigation of the oxygen isotope fractionation between the mineral and water, and the determination of clumped isotope values in vaterite.
 
Teil von