dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel History of network detection completeness in Japan
VerfasserIn Danijel Schorlemmer, Naoshi Hirata, Yuzo Ishigaki, Kazuyoshi Nanjo, Hiroshi Tsuruoka, Thomas Beutin, Fabian Euchner
Konferenz EGU General Assembly 2016
Medientyp Artikel
Sprache en
Digitales Dokument PDF
Erschienen In: GRA - Volume 18 (2016)
Datensatznummer 250135105
Publikation (Nr.) Volltext-Dokument vorhandenEGU/EGU2016-15920.pdf
 
Zusammenfassung
An important characteristic of any seismic network is its detection completeness, which should be considered a function of space and time. Many researchers rely on robust estimates of detection completeness, especially when investigating statistical parameters of earthquake occurrence like earthquake rates. Contrary to traditional approaches, we do not estimate completeness using methods in which the completeness magnitude is defined as the deviation of the frequency-magnitude distribution from the linear Gutenberg-Richter relation. Here, we present a method based on empirical data only: phase data, station information, and the network-specific attenuation relation. For each station of the network we estimate a time-dependent distribution function describing the detection capability depending on magnitude and distance to the earthquake. For each point in time, maps of detection probabilities for certain magnitudes or overall completeness levels are compiled based on these distributions. Therefore, this method allows for inspection of station performances and their evolution as well as investigations on local detection probabilities even in regions without seismic activity. We present a full history (1923-2014) of network detection completeness for Japan and discuss details of this evolution, e.g. the effects of the Tohoku-oki earthquake sequence. These results are compared with estimated completeness levels of other methods. We present scenario computations showing the impact of different possible network failures. All presented results are published on the CompletenessWeb (www.completenessweb.org) from which the user can download completeness data from all investigated regions, software codes for reproducing the results, and publication-ready and customizable figures.