dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam
VerfasserIn H. T. L. Huong, A. Pathirana
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 17, no. 1 ; Nr. 17, no. 1 (2013-01-29), S.379-394
Datensatznummer 250017697
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-17-379-2013.pdf
 
Zusammenfassung
Urban development increases flood risk in cities due to local changes in hydrological and hydrometeorological conditions that increase flood hazard, as well as to urban concentrations that increase the vulnerability. The relationship between the increasing urban runoff and flooding due to increased imperviousness is better perceived than that between the cyclic impact of urban growth and the urban rainfall via microclimatic changes. The large-scale, global impacts due to climate variability and change could compound these risks. We present the case of a typical third world city – Can Tho (the biggest city in Mekong River Delta, Vietnam) – faced with multiple future challenges, namely: (i) the likely effect of climate change-driven sea level rise, (ii) an expected increase of river runoff due to climate change as estimated by the Vietnamese government, (iii) increased urban runoff driven by imperviousness, and (iv) enhancement of extreme rainfall due to urban growth-driven, microclimatic change (urban heat islands). A set of model simulations were used to construct future scenarios, combining these influences. Urban growth of the city was projected up to year 2100 based on historical growth patterns, using a land use simulation model (Dinamica EGO). A dynamic limited-area atmospheric model (WRF), coupled with a detailed land surface model with vegetation parameterization (Noah LSM), was employed in controlled numerical experiments to estimate the anticipated changes in extreme rainfall patterns due to urban heat island effect. Finally, a 1-D/2-D coupled urban-drainage/flooding model (SWMM-Brezo) was used to simulate storm-sewer surcharge and surface inundation to establish the increase in the flood hazard resulting from the changes. The results show that under the combined scenario of significant change in river level (due to climate-driven sea level rise and increase of flow in the Mekong) and "business as usual" urbanization, the flooding of Can Tho could increase significantly. The worst case may occur if a sea level rise of 100 cm and the flow from upstream happen together with high-development scenarios. The relative contribution of causes of flooding are significantly different at various locations; therefore, detailed research on adaptation are necessary for future investments to be effective.
 
Teil von