|
Titel |
Spatial-temporal variations in surface ozone in Northern China as observed during 2009–2010 and possible implications for future air quality control strategies |
VerfasserIn |
G. Tang, Y. Wang, X. Li, D. Ji, S. Hsu, X. Gao |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 12, no. 5 ; Nr. 12, no. 5 (2012-03-15), S.2757-2776 |
Datensatznummer |
250010875
|
Publikation (Nr.) |
copernicus.org/acp-12-2757-2012.pdf |
|
|
|
Zusammenfassung |
The Project of Atmospheric Combined Pollution Monitoring over Beijing and its
Surrounding Areas, was an intensive field campaign conducted over Northern
China between June 2009 and August 2011 to provide a comprehensive record
of ozone (O3) and nitrogen oxides (NOx) and contribute to an in-depth
understanding of air pollution in Northern China and its driving forces. In this campaign,
25 stations in an air-quality monitoring network provided regional-scale
spatial coverage. In this study, we analyzed the data on O3 and NOx levels obtained at 22 sites (out of 25 sites due to data availability) over Northern China
between 1 September 2009 and 31 August 2010. Our goal was to investigate the
O3 spatial-temporal variations and control strategy in this area.
Significant diurnal and seasonal variations were noted, with the highest
concentrations typically found at around 03:00 p.m. (local time) and in June. The lowest
concentrations were generally found during early morning hours (around
06:00 a.m.) and in December. Compared with July and August, June has
increased photochemical production due to decreased cloud cover coupled with
reduced O3 loss due to less dry deposition, inducing an O3 peak
appearing in June. The averaged O3 concentrations were lower in the plains
area compared with the mountainous area due to the titration effects of high
NOx emissions in urban areas. When the characteristics of O3
pollution in different regions were distinguished by factor analysis, we
found high levels of O3 that exceeded China's National Standard throughout
the plains, especially over Beijing and the surrounding areas. An
integrated analysis with emissions data, meteorological data, and topography
over Northern China found that the meteorological conditions were the main
factors that dominated the spatial variations of O3, with the presence of
abundant emissions of precursors in this area. The smog production
algorithm and space-based HCHO/NO2 column ratio were used to show the
O3-NOx-VOCs sensitivity and examine the control
strategy of O3 over Northern China. The results show that summer O3
production in the plains and northern mountainous areas was sensitive to
VOCs and NOx, respectively. The presented results
are intended to provide guidance for redefining government strategies to control
the photochemical formation of air pollutants over Northern China and are
relevant for developing urban agglomerations worldwide. |
|
|
Teil von |
|
|
|
|
|
|