dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Physically based distributed hydrological modelling of the Upper Jordan catchment and investigation of effective model equations
VerfasserIn H. Kunstmann, A. Heckl, A. Rimmer
Medientyp Artikel
Sprache Englisch
ISSN 1680-7340
Digitales Dokument URL
Erschienen In: Integration of hydrological models on different spatial and temporal scales ; Nr. 9 (2006-09-26), S.123-130
Datensatznummer 250006581
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/adgeo-9-123-2006.pdf
 
Zusammenfassung
Sufficient freshwater availability in the water scarce environment of the Upper Jordan Catchment (UJC) is a central prerequisite for peaceful agricultural and industrial development. Hydrological modelling is required to understand terrestrial water balance and to provide scientifically sound estimates on water availability.

This article aims at two related objectives: First the water balance of the UJC, a hydrogeologically complex catchment located at the borders of Israel, Syria and the Lebanon, is investigated. It is for the first time that a physically based model is set up for this region that accounts both for the entire terrestrial water balance and in particular for the groundwater-surface water interaction. It is shown that the model is able to describe observed river discharges satisfactorily.

Secondly, it is investigated if observed and simulated runoff components can be explained by simple lumped approaches based on 1) linear filter theory and 2) neural networks and what the number of degrees of freedom for the runoff components is. It is exemplary shown for the Ayun subcatchment of the UJC that the simulated river discharge, the direct runoff component and the interflow runoff component as modelled by the physically based distributed hydrological model WaSiM can be described by simple effective equations with only 3 to 5 degrees of freedom. Application of simple lumped approaches to observed river discharge values showed much weaker performance.

 
Teil von