dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Greenhouse gas emissions from the grassy outdoor run of organic broilers
VerfasserIn B. Meda, C. R. Flechard, K. Germain, P. Robin, C. Walter, M. Hassouna
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 9, no. 4 ; Nr. 9, no. 4 (2012-04-20), S.1493-1508
Datensatznummer 250006956
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-9-1493-2012.pdf
 
Zusammenfassung
Nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) fluxes over the grassy outdoor run of organically grown broilers were monitored using static chambers over two production batches in contrasted seasons. Measured N2O and CH4 fluxes were extremely variable in time and space for both batches, with fluxes ranging from a small uptake by soil to large emissions peaks, the latter of which always occurred in the chambers located closest to the broiler house. In general, fluxes decreased with increasing distance to the broiler house, demonstrating that the foraging of broilers and the amount of excreted nutrients (carbon, nitrogen) largely control the spatial variability of emissions. Spatial integration by kriging methods was carried out to provide representative fluxes on the outdoor run for each measurement day. Mechanistic relationships between plot-scale estimates and environmental conditions (soil temperature and water content) were calibrated in order to fill gaps between measurement days. Flux integration over the year 2010 showed that around 3 ± 1 kg N2O-N ha−1 were emitted on the outdoor run, equivalent to 0.9% of outdoor N excretion and substantially lower than the IPCC default emission factor of 2%. By contrast, the outdoor run was found to be a net CH4 sink of about −0.56 kg CH4-C ha−1, though this sink compensated less than 1.5% (in CO2 equivalents) of N2O emissions. The net greenhouse gas (GHG) budget of the outdoor run is explored, based on measured GHG fluxes and short-term (1.5 yr) variations in soil organic carbon.
 
Teil von